Using fields

September 9, 2024

Using fields September 9, 2024

Contents
Defining a field 3
Pathstofields o o e e e 4
Pathsegments e e 6
Special and advanced techniques 7
Opticalfields e e e e 11
Using the built-in screenshot-taker 11
Testingapath e e e 13
UsingCuesta e e e 13
Usingafloworthedebugger. 13
Fields API 14
Click . . o o e e e e 14
Clickwithoffset e 15
Simulated Click L e e e e e e e 15
Simulated click withoffset e 16
Rightclick o o o e 16
Right-click withoffset 16
Doubleclick o e 17
Double-click withoffset 18
Clickcell o e e e e e 18
Read . . . e e e e e e 19
Bounds e 20
EXistS . . . e e e e e e 20
INSpect L e e e e e e e e e 21
Reflectiondepth 21
Find/FindAll e 22
INPUL . . . e e e e e e e e e e e e e e e e e 23
Native input o o e e e e e e e 24
Nativeinputwithdelay e 24
Select e 25
Selectwithindex e e 27
Selectwithoffset e 27
Selectwithoffsetandskip 27
Toggle a checkbox/radiobutton 28
Check/Uncheck e e e 28
isChecked e e e e 28

Using fields September 9, 2024

Editcell o o e 28
Highlight e 30
Highlight withcolor. 30
Lowlight o o e 30
Eval . . . e 30

When configuring an application for automation purposes it is often necessary to interact with the
user-interface of the application in some manner. A field as concept in Cuesta represents an element
in the user-interface which can be interacted with.

This can be a button, a dropdown, a table or any other type of user-interface element. Once defined
a field can be manipulated in a flow, e.g. clicking a button named Ok would look like the following in
a flow:

Fields.Ok.click();
What happens in that statement is that we get the Ok field from the Field object. If the field nameis
not a valid Javascript variable name, then use the object indexing scheme instead, e.g.:

Fields['Ok'].click();

Defining a field

A field can be identified from its path or using a screenshot of the field. The path approach utilizes
structuralinformation in the user-interface while the screenshot is purely visual making it more brittle
wrt changes in application appearance. The Cuesta form for defining a field is given below:

September 9, 2024

Using fields

Optional screenshot to
better visually identify the

field
Launch the field finder

Add (multiple) fallbacks for the field
|

—-"'-''_F'——--'_FF
Primany path n’
[

x
Choose the type of
the field |
.-’f//’ |
Locator type @ Path Optical |
Path I

‘ Highlight path elements

Test

read() Click =~ Misc =

@& inspect()

Highlight the field Do misc actions with/
on the field

Figure 1: Defining a field in Cuesta

Paths to fields
A user-interface has a structure like a tree with the root of the tree being the window and the elements

the branching structure. For instance the following application layout:

|| |[Hello, I'm a text-field.

Using fields September 9, 2024

The structure of the user-interface above can be mapped to a tree like so:

Window
I
I
I
Y,
Panel
I
I
Fmm e Fmm +
I I I
| I |
v Y, v
TextField - Hello ... Button - OK Button - Cancel

To identify e.g. the Cancel button we use a scheme where you provide the path from the root of the
application to the element to be identified. In the example above an identifying could be (marked
with *):

*Windowx

Using fields September 9, 2024

v v v
TextField - Hello ... Button - OK *Button - Cancelx

And in a textual form this translates to:

Panel/Button - Cancel

Path segments

Paths are compromised of a number of segments; one for each step down in the tree structure. Each
segment matches itself against a user-interface element, checking a set of predefined properties on
the element. These are commonly:

+ The type of the element (e.g. TextField, Label)
« The automation-id if present
The textual content of the element

The given name of the element
« and more...

Thus the path in the previous example can be shortened to:

Panel/Cancel

The default matching algorithm for each segment simply checks if the given string is a substring of
the extracted element property. Using a few simple operatorswe provide more flexibility and greater
accuracy:

« xancel matches any string ending with “ancel”

Can* matches any string starting with “Can”

xan* matches any string containing “an”
« A, +an.+A matches the string against the regular expression . +an. +

Furthermore the segment ** can be used to match deep into the structure, e.g. the path:

**x /Cance'l
Will match the first element matching Cancel anywhere in the structure. This can also be used like
so:

Panel/x*x/Cancel

Using fields September 9, 2024

Which matches any Cance'l element with a Panel ancestor.

Special and advanced techniques

The following is a list of semi-rarely used techniques which can prove useful in tricky and non-
accessible user-interfaces.

Locating via relative position

Ifitis not possible to locate afield directly then it may be possible to use another more easily locatable
field as a sort of anchor and then using the relative (according to the anchor) position of the desired
field as a guide. This is often the case with fields that have easily locatable labels. Using the label
as the anchor and then specifying e.g. that the desired field is the textfield below the anchor is then
possible. A positional path looks like:

*%x /Panel/AnchorElement<above>DesiredElement

This pathwill causethe AnchorElement to be found and then asearch forthe nearestDesiredElement
below the anchor. It should be read as “look for a Panel element somewhere in the tree, then find
a child AnchorElement which is positioned above a DesiredElement which is our target”.

The possible positional hints are:

+ <above> the anchor element must be found above the target

+ <below> the anchor element must be found below the target

+ <left-of>the anchor element must be found left of the target

+ <right-of>the anchor element must be found right of the target
+ <nearest> the nearest matching element to the anchor is selected

The closest match is the one selected if there are more matching elements in all the above cases.

Another possibility is to define a field based on the path to an element and an offset in pixels from
that element to find a second element. The syntax looks as follows: xx/0kButton<offset-with>
@-10200. This will locate an element 10 pixels to the left and 200 pixels below the upper left corner
of some Ok button.

Locating via structural hints

For fields that can best be identified by their placement in the Ul tree, we can use structural hints.
These allow an element to be identified by a unique child or sibling it may have. An example could be
an input with no unique features, which has an easily identifiable label as its sibling. The path syntax
is like the positional hints:

Using fields September 9, 2024

**% /Panel/AnchorElement<sibling-of>DesiredElement

The available structural hints are:

+ <child-of> the anchor element must be a child of the target
« <sibling-of> the anchor element must be a sibling of the target

Skipping matches

In case the user-interface contains “twins” i.e. undistinguishable elements in the same level of the tree
then then the skip operator (#) can be used to select the i’th matching sibling. Consider the following

tree:
Panel
|- Button
|- Button
‘- Button

In order to target the 2nd button we might use the following path:

Panel/Button#1l

The skip operator can only be used with the last element in the path and will thus only apply to the
siblings of the targeted element.

Restricting path property types (native applications only)

To increase path resolution speed in native applications you can specify which property on the Ul
element should be used for matching each path segment by prefixing the segment with (<type-
goes-here>). A button with the text “Ok” can then be specified with xx/ (text)0Ok. The type can
appear on all segments e.g.

*% [/ (type)Panel/ (text)Ok

Which resolves any Ul element with the text “Ok” directly inside a panel.
The available property-types are:

« 1idthe (automation)id of the element

« text the text representation of the element (normally the text you can see in the Ul)
«+ class the class of the Ul element

+ type the type of the Ul element

Using fields September 9, 2024

« name the name of the Ul element

The type can be “button”, “panel”, “menu”, “textbox” etc.

Targeting a native menu

Paths prefixed with @ traverse the menu of an application. E.g.

new Field("@Files/Save").click();

will try to open the “Files” menu, then click the “Save” option.

Backtracking (in web-applications only)

Another rarely occurring case is when the target can only be uniquely matched by targeting one of its
descendents. In the following example we have a clearly locatable Ok Button but we are really only
interested in an anonymous Panel locate two levels up in the tree.

Panel <- this is our target
‘- Panel
‘- Button - Ok <- this is the Button we can locate
Here we can target the desired panel by way of the following path:
[Panel] /Panel/0Ok

The [and] effectively tells the path targeting mechanism to do the full path resolution but return the
element contained within.

Using CSS selectors (in web-applications only)

An alternative path format for use in web-applications is using CSS selectors. In some cases using CSS
selectors is easier and faster. E.g. for finding an element with a specific id:

#the-id

vs the normal path format:

** /the-1id

The latter being faster.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Using fields September 9, 2024

Searching a specific embedded window

Given a multi-window application or an application with many embedded “windows”, it is sometimes
useful to limit the search for a given element to a specific window. This is done by prefixing the
path with {title-of-window} and thus limiting the search to any windows whose title matches
the given. E.g.:

{MyWindow}**/Panel/0Ok

Searching in all windows on the desktop

For native apps, it is possible to break out of the current application when searching for a window by
prepending the window-matching part of the field with !.

{!Foo}*x*/0k

Will search all windows matching Foo and return the first match on the rest of the path.

For other app types, the exclamation mark in the window matcher causes manatee to use a native
driverto traverse the indicated window. This is useful eg for native dialogs in a chrome browser, which
are otherwise difficult to interact with.

In a chrome app, click a dialog ok button with a path like this:

{!}*x/0K

The empty window matcher is shorthand for traversing the main window of the chrome app. To access
a native calculator from a chrome app, use a path like this:

{!Calculator}*x/ResultPane

Matching invisible controls

For java and wep apps, it is occasionally possible and desirable to interact with controls that are not
visible to the user.

Note that in doing so, you are straying from what the developers of the application intended. As a
consequence, the application may behave unexpectedly. Thorough testing is adviced.

By default, invisible path matches are inaccessible for automation. You can however indicate to man-
atee that you want to allow such matches with an exclamation mark at the end of the path like this:

*x /HiddenButton!

10

Using fields September 9, 2024

Such a path will match the HiddenButton control even if it isn’t visible.

*x /[Ok#2!

This path finds two sibling Ok-buttons (or similar) and matches the second one - even if it isn’t visible.

Determining the presence of invisible controls can be tricky. They can sometimes be found with the
field finder while they are visible and testing may then reveal that the path still works when the control
is hidden (when an exclamation mark is added as illustrated above).

You can also use the includeInvisible flag when creating a field;

var f = new Field("**/HiddenButton", { includeInvisible: true });

Yet another way to find hidden Ul controls is by analyzing application structure with the inspect com-
mand. The inspect output includes a boolean visible property indicating whether an exclamation
mark is required to match the control.

Optical fields

Opticalfields are simply small screenshots of the user-interface element with an optional offset which
Manatee will try to find visually and translate to a proper element. The offset is used e.g. when clicking
s.t. the actual click is offset from the found location of the element.

Using the built-in screenshot-taker

If the field can only be identified by a screenshot press the Grab screenshot button. A red square will
appear which can be move and resized to fit the field. When the red square fits the field click on the
square once. The square turns green and is now fixed to the field. In order to be able to click on the
field (if applicable) click on the position on the screen where the click must be done. A red dot will
show where the click will be done.

11

Using fields

September 9, 2024

Primary path O Backupoptical #1 ©

X

Locator type Path ‘& Optical

1 Point and click . Grab screenshot =

X offset Y offset
122 : 25
&y
Match confidence

Match the image on complete desktop

Test

@ inspect() sread() Click - Misc -

Screenshot of application Ul
element is grabbed from the
running application

B
\

& n

v

Middle button

Disable middle button

Figure 2: The built-in screenshot taker in action

12

Using fields September 9, 2024

The screenshot is shown in Cuesta. The click position can be adjusted in the X and Y offset fields.
Match confidence can be set to reduce how acurately the screenshot should match the graphics on
the screen in the application in order to have a match on the field. It can typically be set to 0.7.

Testing a path

Given a path it is useful to be able to see that the element found when the path resolution is done in
Manatee is the correct element found. This can be done directly from Cuesta or by using the field in a
flow.

Using Cuesta

Activating the locate button in Cuesta will cause a local Manatee to highlight the field found. Thisis a
quick and easy way to check whether the path is correct or not.

Test

@ .inspect()

Use the locate button
to find and highlight
a field from its path.

Remember to save
before clicking the
button.

Figure 3: Click the locate button to find and highlight the field

Using a flow or the debugger

It is also possible to use a flow or the REPL in the Debug. ger () to highlight, inspect or otherwise
manipulate and test a path. Fields can be created on-the-fly in a flow meaning that the following

13

Using fields September 9, 2024

code is a quick way to try out a path:

var f = new Field('**/Panel/0Ok'");

f.highlight(); // to try and highlight the element
f.click(); // to try and click the element
f.inspect(); // to gain more info about the element
// and other field methods

Fields API

Once a field has been defined it can be used in a flow. Depending on the type of field (i.e. whether it
represents a button, a panel or something else) the following methods are available.

Click

Will click on the given field.

Parameters

« options an optional options object, supports;

- deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

Fields["mybutton"].click();

// With an optional 500 ms deadline and try to retrieve the field from
the cached fields

14

Using fields September 9, 2024

Fiels["mybutton"].click({ deadline: 500, useFieldCache: true 1});

Click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

Parameters

« x the number of pixels from the left of the element to click
« y the number of pixels from the top of the element to click
« options an optional options object, supports;

- deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

// Click myButton 20px from left and 10px from top
Fields["mybutton"].clickWithOffset (20, 10);

Simulated Click

Will simulate a mouse-click on the given field. The difference between simulate-click and click is only
relevant for Java applications where mouse-events can be generated directly (click) or as a series of
injected events - mousedown, mouseclicked, mouseup (simulateClick).

Example

Fields["mybutton"].simulateClick();

15

Using fields September 9, 2024

Simulated click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

Example

Fields["mybutton"].simulateClickWithOffset(20, 10);

Right click

Will right-click on the given field.

Parameters

« x the number of pixels from the left of the element to click
« y the number of pixels from the top of the element to click
« options an optional options object, supports;

- deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

Fields["mybutton"].rightClick();

Right-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

16

Using fields September 9, 2024

Parameters

« options an optional options object, supports;

- deadline the timein ms to wait for the click to fail/succeed. If the click takes longer than

Example

the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

// Click myButton 20px from left and 10px from top
Fields["mybutton"].rightClickWithOffset(20, 10);

Double click

Will double-click on the given field.

Parameters

« options an optional options object, supports;

- deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than

Example

the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

17

Using fields September 9, 2024

Fields["mybutton"].doubleClick();

Double-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

Parameters

+ x the number of pixels from the left of the element to click
« y the number of pixels from the top of the element to click
« options an optional options object, supports;

- deadline thetimein ms to wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller. The use-case
for the deadline parameter is for example if the click launches a dialog which blocks the
thread, then setting a deadline allows the flow to continue even though the click is techni-
cally not done.

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

// Click myButton 20px from left and 10px from top
Fields["mybutton"].doubleClickWithOffset (20, 10);

Click cell

Click in a cellin table (only applicable for tables). Clicking a cell has the following variants:

o clickCell(...) left-click a cell,
o rightClickCell(...),and
o doubleClickCell(...).

All with the following parameters:

18

Using fields September 9, 2024

Parameters

» rowMatch a text to match in the row - if an integer is supplied then that is used to select the
row index
« colMatch a text to match in a column header - also use an integer here to use the column
with that index
+ options an options object on which the follow properties can be set;
- deadline the timein ms to wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller.
- reflectionDepthindicates how deep to do the search for the rowMatch value (also see
Reflection depth)
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).
- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option
- offsetXanintdenotingthe offset to use for the click from the left-most border of the cell
- offsetYanintdenoting the offset to use for the click from the top-most border of the cell

Example

// Click in the cell defined by 1its row containing 'A' and its column (
header) containing 'B'

Fields["myTable"].clickCell('A', 'B'");

// The same command but use reflection depth to do a deeper search

Fields["myTable"].clickCell('A', 'B', { reflectionDepth: 2 });

// Click row 10 in column with header 'B'

Fields["myTable"].clickCell(10, 'B', { reflectionDepth: 2 });

// Click row 10 in column 1

Fields["myTable"].clickCell(10, 1, { reflectionDepth: 2 });

Read

Will read the value of the field. Depending on the type of the field the behavior will differ, e.g. on a
label it will return the text content of the label, for a text-field it will return the contents of the text-
field. For a more complex container type it will return a JSON representation of the control (which

19

Using fields

September 9, 2024

can be natively accessed in the flow as an object). See JSON serialisation for details on how different

types are serialised.

Parameters

+ options an optional options object with details regarding the inspection.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the

underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be

significantly faster in some cases - default false

- throws boolean indicating whether to throw an error if the field cannot be found. Defaults

to true. Native, java and IE drivers do not support this option. They always throw when the

field cannot be found.

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global

option

Example

var contents = Fields["mytextfield"].read();

Bounds

This can be used to get the bounds (location and size) of the field.

var b = Field["0OK"].bounds();
// b is now an object e.g.
// { width: 100, height: 100, x: 10, y: }

Exists

Returns true if the field could be found.

Example

if(Fields["mytextfield"].exists()) {

20

Using fields September 9, 2024

Inspect

Inspect a given field. The returned object will contain misc information about the field - the type of
information depends on the type of the field.

The resulting object can additionally be used for finding and interacting with other Ul elements in-
side the inspected field. Each object in the resulting object hierarchy provides the full palette of field
operations.

Reflection depth

You can optionally obtain more detailed information about the data in eg treeviews. To do this, pass
a positive reflectionDepth value as shown in the examples below.

As an example, reflectionDepth: 3 means the result includes fields such as arrival.date.day (3
steps) but noteg patient.eyes.left.tla (4 steps).

The reflectionDepth paramater affects the data available in the output under the objects in the
control in question (eg treeview nodes). The main use of this feature is to determine which patterns
tousewith Field['field'].select() when simply selecting the rendered text doesn’t work.

Parameters

« options an optional options object with details regarding the inspection.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- includeChildren boolean indicating if the children of the targeted element should be
included in the result. Defaults to true. Set to false when targeting a high level container
as the result may otherwise be a bit unwieldy.

- reflectionDepth (see below)

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

- collectTexts (Java only) tries to figure out text contents of rendered controls. May be
useful in combination with useCachedUT in some tables which uses buffered renders.

Example

21

Using fields September 9, 2024

var info = Fields["mytextfield"].inspect();

// See which information was returned
Debug.showDialog(JSON.stringify(info));

// If info has a “text property, then this will show the text
Debug.showDialog(info.text);

var detailedInfo = Fields["myTreeView"].inspect({ reflectionDepth: 2});
// This object includes extra data under the nodes of 'myTreeView'.
Debug.showDialog(JSON.stringify(detailedInfo));

Find / FindAll

On objects returned by inspect, you are provided the convenience methods find and findA1l1l,
which make it simpler to traverse the inspect result object structure. Where find returns the first
match to your query, findA1l1 returns them all. As a convenience, find and findA1l1 are also made
available directly on the field, so you don’t have to call inspect explicitly. Manatee will issue an
inspect command on your behalf and traverse the result according to your query.

Parameters

The parameter signatures of find and findA1l1l are identical. * First argument is either - A string:
Manatee will return the first object in the inspect result with a property value that exactly matches this
string - Aregular expression: Manatee will similarly scan all properties on all objects in the structure for
one matching the regexp - A function: Manatee will call this function, passing in as the only argument
each objectin the structure one at the time. When the function returns true, that object is included in
the find/findA1ll result. * Second argument is an options object which serves to modify the search
algorithm and is also passed to inspect allowing its behavior to also be customized. The properties
supported by find/findAl1l are as follows: - skip (number): Skip the indicated number of matches
before any matches are accepted - property (string): Specify which properties to match. Only useful
if the first argument is either a string or a regexp.

Custom traversal

If you need to traverse the structure in a way that can’t be achieved with the find/findA1l1l methods,
you can create your own recursive traversal function. For each node in the structure, the children
property provides access to the children of the node. See example below.

22

Using fields September 9, 2024

Example

var containerInfo = Fields["aContainer"].inspect();
// click the second OK button inside the container
containerInfo.find('OK', { skip: 1 }).click();

// A simpler way of doing the same
Fields["aContainer"].find('0OK', { skip: 1 }).click();

// A multi-step approach - only one inspect command is issued before
the click command

Fields["aContainer"].find(/Button.xArea2/i, { property: 'name' }).find(
"Cancel").click();

// Find enabled buttons and click them
var visibleButtons = new Field("*xx/Container").findAll(function(o) {
return o.enabled == "true" && o.type == "button"; });
for (var i = 0; i < visibleButtons.length; i++) {
visibleButtons[i].click();

// Custom recursive traversal to click the first enabled button
var structure = Fields["aContainer"].inspect();
function search(node) {
if (node.enabled == "true" && node.type == "button") return node;
for(var i = 0; i < node.children.length; i++) {
var hit = search(node.children[i]); // recursive call to dive
deeper 1into the structure
if (hit) return hit;
}
return null;

}

search(structure).click();

Input

Input a text value into a textfield/textbox/etc.

Parameters

« textthetexttoinput
« options an optional options object.

23

Using fields September 9, 2024

- useCachedUI an optional boolean indicating if Ul component lookup should use the Ul
itself or the underlying model. Defaults to false (underlying model traversal).

- fileanoptional booleanindicatingif the field is an html file input, which requires special
treatment. If this is set to true, then the value must be a valid path that points to a file or
an exception may be thrown. Only applicable to web apps.

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

Fields["mytextfield"].input("some text");

Fields["myFileField"].input("C:\\some\\file.txt", { file: true 1});

Native input

Inputs textinto afield using native events, i.e. simulating keyboard input. Thisis useful for fields which
does validation (e.g. date-fields or similar). Use only if the input method does not work.

Parameters

+ textthetexttoinput-youcanuse <backspace> toindicate a backspace/delete action, as well
as <enter>and <tab>.

Example

Fields["mydatefield"].inputNative("11112011");
Fields["mydatefield"].inputNative("123<backspace>"); // field will
contain '12'

Native input with delay

Inputs text into a field using native events with a given delay between each keystroke simulating key-
board input. This is useful for fields which does validation (e.g. date-fields or similar). Use only if the
input method does not work.

24

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file

Using fields September 9, 2024

Parameters

« text the text to input
« delay the number of milliseconds to wait between each “keystroke”

Example

Fields["mydatefield"].inputNativeWithDelay("some text", 100);

Select

Select a value. This only works for dropdowns, listboxes, tabs and tree-views.

Note that for tree-views the value given to this function may be an expression which matches the path
to a leaf. E.g. for the following tree:

The node c may be selected by:

Fields["tree"].select("a/b/c");

::: tip Slashing

You can use <s'lash> in your path if you need to select an option containinga /.

Example

If you have an option called foo/bar you need to select then just using "foo/bar'" will try to first
select a "foo'" then look for a sub-item named "bar". Instead if you use "foo<slash>bar" it will
match the desired option.

25

Using fields September 9, 2024

Parameters

+ va'luethevaluetoselect. By default valueistreated as a regular expression, where characters
like ., » and (have special meaning. If you want a literal match you need to surround value
with << and >>, e.g. select('<<'+v+'>>") where v is the literal value find in the select op-
tions - it will match if the select option contains the given value. To do an exact match use <<<
and >>> instead (for exact and contains matches you can also use the options listed below).

+ options an optional options object with details regarding the selection.

- deadline the time in ms to wait for the select to fail/succeed. If the select takes longer
than the deadline to fail or succeed it will be reported as succeeding to the caller.

- reflectionDepth an optionindicating how far the select matching should dive into java
objects (eg treeview nodes). Setting this too high may negatively affect performance. De-
faults to 0. Use the inspect method to determine how to match against this information
and what an appropriate (minimal) reflection depth is.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

- exact a bool indicating whether the value should match exactly (i.e. treated as a literal
value and matches with an equals method)

- containsaboolindicating whether the value should match by checking if its a substring

- expand boolean indicating if the targeted collapsed tree node should be expanded after
selection. Only supported in java apps.

Example

// Select "optionl" and use reflectionDepth to to try and find "optionl

Fields["mytree"].select("optionl", { reflectionDepth: 2 });

// exact match
Fields["mytree"].select("optionl", { exact: true });

// check a checkbox (long form of .check())
Fields["myCheckBox"].select(true);

26

Using fields September 9, 2024

Select with index

Select a value based in an index. This only works for dropdowns, tabs, listboxes and tree-views.

Parameters

« index istheindexinthe combo, listbox or tree to select.
+ options an optional options object with details regarding the selection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).
- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false
- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global
option

Example

Fields["mycombo"].selectIndex(5);

Select with offset

Select a value (with an offset). This only works for dropdowns, tabs, listboxes and tree-views.

Parameters

+ value thevalue to base selection on. The value needs only to partially match the shown option
to be selected, e.g. using “utte” in a list containing the item “butter” will select it.

+ offset (int) the offset which will be used to do actual selection. E.g. if “1” then the next element
(which was found using value will be selected).

Example

Fields["mytree"].selectWithOffset("optionl", 1);

Select with offset and skip

Select a value (with an offset and skip). This only works for dropdowns, tabs, listboxes and tree-views.

27

Using fields September 9, 2024

Parameters

« valuethevalueto base selection on. The value needs only to partially match the shown option
to be selected, e.g. using “utte” in a list containing the item “butter” will select it.

+ offset(int) the offset which will be used to do actual selection. E.g. if “1” then the next element
(which was found using value will be selected).

+ skip will select the N’th match to start from. E.g. 1 will skip the first match and select the 2nd.

Example

Fields["mytree"].selectWithOffsetAndSkip("optionl", 1, 1);

If used on e.g. a combobox with options; [“optionl”, “option2”, “optionl”, “option3”] the code-
fragment above will select “option3”. This is done by first looking for all “optionl”s. Then skip 1 this
will get you the 2nd “optionl”, then offset by 1 which will get you “option3”.

Toggle a checkbox/radiobutton

Check or uncheck a checkbox or radiobutton. Note that radiobuttons don’t always support explicit
unchecking. This often requires selecting another radiobutton in the same logical group. A method
also exists for getting the checked state of such controls.

Check/Uncheck

Fails silently, if the target isn’t a radiobutton or checkbox #### Example

Fields["myCheckbox"].check();
Fields["myOtherCheckbox"].uncheck();

isChecked

This method may throw an error if the field isn’t something that can be checked

var isSelected = Fields["myRadiobutton"].isChecked();

Edit cell

Can be used in a table to edit a given cell.

28

Using fields September 9, 2024

Parameters

« row the row in which to find the cell (match any cell in the row) or use an integer to denote
the row index to edit
« co'lumn the column in which to find the cell (must match a single column) or use an integer
to denote the column index to edit
« value the value to putinto the cell (works with textfield and dropdowns)
+ optionsisan optional argument, which can contain:
- reflectionDepth used to finding the value if there is e.g. a combobox in the cell to edit

(also see Reflection depth)

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

- useFieldCache boolean indicating whether to use a cache to lookup the field - may be
significantly faster in some cases - default false

- fieldCacheExpiry intindicating the useable age in seconds of the field retrieved from
the cache (only relevant if useFieldCache is true) - default is configurable as a global

option

Example

Given the following table:

header1 header2

cell 1 cell 2

cell 3 cell 4

This command:

Fields["mytable"].editcell("cell 3", "header 2", "boom");

Will result in this table:

header1l header2

cell1 cell 2

cell 3 boom

The same thing can be accomplished if the indices are known:

29

Using fields September 9, 2024

Fields["mytable"].editcell(1, 1, "boom");

The method asthe editTable and editCell aliases.

Highlight

Highlight the given field with the default color.

Example

Fields["myfield"].highlight();

Highlight with color

Highlight the given field with the given color. Available colors are red, green and blue.

Parameters

+ co'lor the highlighting color - red, green or blue.

Example

Fields["myfield"].highlightWithColor ("blue");

Lowlight

Cancel a highlight on a field.

Example

Fields["myfield"].lowlight();

Eval

Evaluate javascriptin the hostapp with access to the resolved field Ul elementinthe element variable.
For more information about evaluating javascript in the host app, see App.eval.

30

Using fields September 9, 2024

Example:

1 // Trigger event on input element. Useful for some web apps

2 Fields["input"].eval("element.dispatchEvent(new InputEvent('input'));")
>

3

4 // Call method on parent component in java app

5 var parentStatus = Fields["myfield"].eval("element.inner.getParent().
getStatus();");

// Get info about the layout of the java class of the object pointed to

by the field

8 var classInfodson = Fields["myfield"].eval("Class.info(element.inner) ;"
)5

9

10 // Inspect contents of the java object pointed to by the field

11 var fieldContentdson = Fields["myfield"].eval("Class.inspect(element.
inner);");

12

13 // Retrieve json encoded list of a java JComboBox' options (fictional
property names)

14 var optionsJson = Fields["myCombo"].eval("Class.inspect(element, ['
inner', 'model', 'allOptions], 2);");

15

16 // Retrieve deep value from java field - conceptually equivalent to '
fieldObject.address.streetName'

17 var streetName = Fields["myfield"].eval("Class.deref(element, ['inner',

'address', 'streetName']);");

For java apps in particular, this version of eval provides a shortcut into the app’s hierarchy of object

instances that might otherwise be hard to reach with App.eval(..).

31

	Defining a field
	Paths to fields
	Path segments
	Special and advanced techniques

	Optical fields
	Using the built-in screenshot-taker

	Testing a path
	Using Cuesta
	Using a flow or the debugger

	Fields API
	Click
	Click with offset
	Simulated Click
	Simulated click with offset
	Right click
	Right-click with offset
	Double click
	Double-click with offset
	Click cell
	Read
	Bounds
	Exists
	Inspect
	Reflection depth
	Find / FindAll

	Input
	Native input
	Native input with delay
	Select
	Select with index
	Select with offset
	Select with offset and skip
	Toggle a checkbox/radiobutton
	Check/Uncheck
	isChecked

	Edit cell
	Highlight
	Highlight with color
	Lowlight
	Eval

